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ABSTRACT

This report presents a review of a video moving target indication (VMTI) capa-
bility implemented in the Analysts’ Detection Support System (ADSS). The VMTI
subsystem has been devised for video from moving sensors, in particular, but not
exclusively, airborne urban surveillance video. The paradigm of the moving sensor,
which is a typical scenario in defence applications (e.g., UAV surveillance video),
poses some unique problems as compared to the stationary sensor. Our solution to
these problems draws on a number of algorithms from the computer vision commu-
nity, and combines them in a novel system. It will provide positional and size infor-
mation for any moving targets in a given video sequence, on a frame by framebasis.
Moreover, given suitable parallel non-specialised hardware, the system allows a near
real time solution to VMTI in ADSS.
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Video Moving Target Indication in the Analysts’ Detection Support
System

EXECUTIVE SUMMARY

This report presents a review of the video moving target indication (VMTI)subsystem cur-
rently implemented within the Analysts’ Detection Support System (ADSS). The ADSS was orig-
inally developed to assist in the exploitation of synthetic aperture radar (SAR) imagery, but de-
velopments over the past several years have facilitated effective processing of streaming video
data. New algorithms have been incorporated to support urban surveillance from airborne and
ground-based platforms, in particular VMTI. VMTI for a static camera hasbeen well researched
and reported in the literature over the past decade, and there are a number of excellent COTS prod-
ucts available to detect and analyse motion in video from static cameras (e.g., the products offered
by the Australian companiesClarity Visual IntelligenceandSentient Software). VMTI for moving
cameras however is considerably less mature. We saw this technology gap as an opportunity to
develop our own video processing algorithms within ADSS, for important applications such as
VMTI for Unmanned Aerial Vehicle (UAV) surveillance.

The paradigm of the moving sensor poses some unique problems as compared to the stationary
sensor because, relative to the camera, everything in the scene appears to be moving. The motion
of the actual targets must then be distinguished from the global motion in the scene. Our solution
draws on a number of algorithms from the computer vision community, and combines them in a
novel system. In particular, we leverage existing algorithm development wehave in shape from
motion, e.g., feature tracking and outlier removal, and combine it with established work for the
static camera scenario,e.g., background modelling and frame differencing. The solution provides
positional and size information for any moving targets in a given video sequence, on a frame by
frame basis. Moreover, given suitable parallel non-specialised hardware, the system allows a near
real-time solution to VMTI. A VMTI system needs to run at a near real-time rate tobe of any
operational value in the field; we are not aware of any existing real-time VMTI system matching
our performance capabilities. We compare two other VMTI systems with ours and provide a
comparative analysis.

The technique reported here won the “Best Paper” award when it was presented in a shortened
form at the recent Digital Image Computing: Techniques & Applications Conference in Cairns,
December 2005.
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1 Introduction

Video surveillance is an essential and commonly used mechanism for protecting vital infras-
tructure and improving situational awareness. However, manual exploitation of surveillance video
can be such an intensive activity that often its only practical role is either asa visible deterrent
or for post-mortem analysis following a particular event. Such utility is unacceptable when the
event requires interdiction before there is loss of life or infrastructure.The instigation of a real-
time response can be facilitated by using an active video surveillance approach, where automatic
processing of multiple video streams draws the attention of analysts to suspicious activity, leaving
the vast majority of benign imagery to pass unchecked by the human analyst.

This report presents a review of the video moving target indication (VMTI)subsystem cur-
rently implemented within the Analyst’s Detection Support System (ADSS). The ADSS is a flexi-
ble processing engine developed to assist the imagery analyst to detect targets in all-source surveil-
lance imagery. It provides the means of structuring a hierarchy of algorithms which, when applied
to the data, makes progressively refined decisions on the locations of targets. The ADSS was
originally developed to assist in the exploitation of synthetic aperture radar (SAR) imagery [46],
but recent infrastructure developments have facilitated effective processing of streaming video
data and new algorithms have been incorporated to support urban surveillance from airborne and
ground-based platforms.

VMTI for a static camera (also known as motion segmentation) has been well researched and
reported in the literature, and there are a number of excellent commercial products available to de-
tect and analyse motion in video from static cameras (e.g., the products offered by the Australian
companiesClarity Visual IntelligenceandSentient Software). The standard approach adopted is
to compare the current frame with a suitable background model constructedfrom the previous
set of frames in the sequence [26]. A significant difference indicates achange in the scene has
occurred, from which it can be inferred that there is motion in the scene. The motion can then
be tracked through the subsequent frames using a tracking algorithm of choice,e.g., particle fil-
ters [48] or simple heuristical methods based on shape characteristics andtemporal integration
(reported herein). The background model is continually updated with the current frame, excluding
those pixels in the frame deemed to be part of moving targets.

In the case of a moving camera however, the situation is significantly more complex because,
relative to the camera, everything in the scene appears to be moving. The motion of the actual
targets must then be distinguished from the global motion in the scene. The problem can be
addressed using one of a number of approaches,e.g., background model based, correspondence
based and optic flow based [31]; see also [11], [25] and [29] for other approaches to the problem.
We have explored and implemented all of these approaches in ADSS, however the approach we
report herein is based on background modelling. We have found that thisapproach is robust to
sensor noise and typically yields complete, high quality object segmentations. Moreover, it pro-
vides persistent target detection should the object stop moving momentarily. This in turn provides
a high quality input to the tracking phase.

This report will proceed as follows. In the following section, we provide adiscussion and
background theory of VMTI for the moving sensor scenario. In a subsequent report, we will de-
scribe the VMTI subsystem as it is implemented in ADSS, and provide details on the individual
modules that make up the subsystem. Section 3 provides some results from ourVMTI work, illus-
trating some of the issues that arise for the moving sensor scenario. In Section 4, we present the
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results of a comparative analysis between the VMTI subsystem we have developed and two other
VMTI systems available: ARIA, a VMTI approach developed by Caprari[12] and implemented in
the MATLAB programming language, and a COTS product developed by anAustralian software
company. Finally, we conclude with some remarks in Section 5.

2 Moving Target Indication

2.1 Related Work

The automated detection and tracking of moving targets using video technologysituated on an
airborne platform has received comparatively little attention, mainly due to the lack of available
imagery and the sensitivity of defence research.

Much of the earlier work focused on FLIR (forward looking infrared)sensors but many of
the approaches were later applied in the visible band. The FLIR fraternity believe they have
the more difficult problem: low signal-to-noise, non-repeatability of target signature, competing
background clutter, lack ofa priori information, high ego motion, and weather induced artifacts
[62] .

Strehl and Aggarwal’s [56] approach is based on the subtraction of registered frames followed
by blob extraction and association etc. The frame-to-frame mapping resultingfrom ego-motion is
modelled as affine, and determined by registering the frames using robust, multiscale matching of
the entire frames i.e. it is not feature based. The affine model is unable to capture the skew, pan
and tilt of the planar scene.

Shekarforoush and Challappa [53] combine sensor stabilisation and detection into a single
stage, however, by essentially using the targets as feature points for registration, the process is
dependent on persistent, high contrast targets and a relatively benignlytextured background.

Some other authors made assumptions about the target characteristics or platform motion that
weakened their proposals. For example, Braga-Neto and Goutsias [8] (who used morphological
operators) assume that target sizes remain constant over time, that they exhibit high contrast with
their surroundings, and that ego-motion is small. Davieset al.[20] proposed a Kalman filter-based
target tracker but made strong assumptions about target motion and assumes no ego-motion.

In the visible band, the approach adopted by Yilmazet al. [62] is relatively unconstrained:
it accommodates high global motion; changes in target signature, and the targets need not move
with constant velocity or acceleration. Significant (global) ego-motion is handled using the multi-
resolution framework proposed by Irani and Anandan [32] if warranted. Targets are detected
using an image filtering and segmentation scheme. The target distributions are then modelled, and
the motion between this and the subsequent frame is determined by finding the translation vec-
tor in image space that minimises the probabilistic distance between model and candidate. This,
mean-shift, approach was originally proposed by Comaniciuet al. [17] and has been used widely,
particularly in ground-based surveillance applications when targets are large and have inconstant
signatures. Mean shift tracking was used by Ali and Shah [1] for tracking vehicles in airborne
(visible) video. The authors claim good performance when tracking targets larger than 100 pixels
in area, and we suggest that it is the mean-shift tracker part of their system that is responsible
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for this soft constraint. Ali and Shah remove ego motion using a feature-gradient descent hy-
brid registration scheme, the aim being to exploit the robustness of feature-based methods and the
accuracy of gradient descent approaches. Moving targets are detected by accumulation of differ-
ences between a frame and itsn neighbours, followed by histogramming of the logs. Large peaks
correspond to background while smaller peaks are targets. Here too, thetargets must be large to
be sure of detecting a corresponding peak in the histogram. Target segmentation is achieved using
level sets [63, 65].

Cheng and Butler [13] (Sarnoff Corporation) describe a video segmentation algorithm based
on combining three outputs: a moving object detector / segmenter (based on background mod-
elling), an unsupervised segmenter (based on local image properties), and a supervised segmenter
(trained to distinguish between object classes, such as vehicle, tree, house). The three are com-
bined based on their semantic meaning e.g. a vehicle can move, a house cannot.

Cohen and Medioni’s initial strategy [14] was to register consecutive frames by minimising
the least squares criterion subject to an affine transformation model (to remove ego-motion), fol-
lowed by the detection of moving objects by detecting anomalies in the normal component of the
residual flow. Later, stabilisation became based on feature tracking. After detection, the objects
were tracked using a dynamic template, and trajectories extracted using a graph searching algo-
rithm [15]. In a subsequent publication, Cohen and Medioni emphasisedthe unification of the
stabilisation and detection stages [16], and Bremond and Medioni [7] describe an adjunct to the
Cohen and Medioni system for recognising behavioural scenarios (based on the use of Petri Nets).

Daleet al.[18] describe a number of video exploitation algorithms that have been implemented
on the ADEPT hardware. They parameterise the global motion field by a planar perspective model,
which is capable of capturing translation, rotation, scale, shear and perspective projection. It is
derived by tracking salient (i.e. strong, persistent and consistent) features. Thus, the tracking
achieves a level of robustness though not necessarily by adopting a statistically rigorous approach
such as RANSAC. Scene content determines the complexity of the global warp (adaptively), that
is, from translation through to perspective projection. The targets are detected by image subtrac-
tion and, as such, the resulting segmentations are of poor quality and of a nature that is difficult to
predict.

Removal of ego motion by global registration is an often used first stage in detecting moving
targets. The aim is normally to register corresponding ground features. However, in addition to
global motion, camera motion produces parallax artifacts, that is, the appearance of independent
motion in objects that are fixed but elevated in comparison with the ground, andthese can be
indistinguishable from moving targets. In an attempt to identify some of these artifacts, Yalcinet
al. [60] describe a flow-based approach which partitions a frame into foreground and background
occlusion layers using an EM-based motion segmentation. Dong and Jinwen [22] prefer to remove
parallax artifacts and propose a morphological procedure to do so. Reliable georeferencing is also
becoming increasingly practical through calibrated camera kinematics and precision registration
of video frames to reference imagery [59]. Planar-plus-parallax use amore sophisticated model
of image motion which can capture the dominant planar motion as well as lines alongwhich the
residual parallex motion is expected [50]. Burns [9] examines techniquesbased on georeferenced
object motion relative to the trajectory of the camera, as well as a new method of classifying objects
and events using features extracted from georeferenced trajectories.

The reader can see that this airborne surveillance problem has essentially three stages: stabil-
isation (or registration [35]) , detect and track. Each stage has many potential types of solution,
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the selection of which will be influenced by overall tracking performance,execution time, and
robustness to unfavourable scene content or sensing conditions. In general, it is difficult to draw
hard and fast rules regarding the suitability of one class of component algorithm over that of an-
other, but in building a system we aim to develop components which complement one another, in
particular, early modules should produce outputs with characteristics and aquality that suits later
modules, and that later modules are robust in any shortcoming in the former. We also look to rely
on a small number of parameters, and that those that are necassary should have a sound statistical
basis and have meaning to the human operator.

This report describes the development of our system, different elementsand slants on which
have been published widely [47, 36, 6]. The tracking element will be the subject of a future report
but the reader is referred to Joneset al. [36] for the application of a particle filter, and the more
recent application of a Probabilistic Multi-Hypothesis Tracker (PMHT) is described by Davey
[19].

2.2 Overview

The VMTI system is based on the assumption that pixels which compose a movingobject
will usually manifest themselves as statistical outliers from a model of the scenewhich has been
constructed over an extended period of time. The basic strategy when dealing with a moving
camera is to apply a video registration process to each frame in the sequenceto remove the effects
of the camera motion, thus allowing background modelling and outlier identificationtechniques
to be applied.

When constructing a background model from a video sequence, an important notion is that of
the temporal window used, or the set of frames from which the background model is constructed.
For a static camera, this is usually the entire set of image frames that have beenacquired up to the
current point in time (though the model is likely to adapt over time). When the camera is moving
however, the length of the temporal window is determined by the following considerations:

• It should be sufficiently short that all frames within the temporal window overlap spatially
by a significant amount.

• It should be sufficiently short that image differences introduced by changes in viewing ge-
ometry as the camera moves through the scene are acceptable for constructing a background
model. These differences generally increase with distance between camera positions, and
cannot be entirely removed by a registration process based on a simple parametric registra-
tion model such as a global affine or projective transform.

• It should be of long enough duration to avoid a contribution to the background model being
made by moving targets, at least to the extent that they do not impact on detection perfor-
mance.

These competing considerations relate directly to the speed of the sensor, itsproximity to the scene
and the size and speed of the targets in the scene. A suitable choice for temporal window length
is therefore dependent on the type of imagery at hand. We have found for our applications that a
length of100 frames often yields an acceptable background model while minimising the effects
of perspective errors (based on standard definition video with 24 frames per second).
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N frames

Figure 1: The video sequence is divided into blocks each withN frames. VMTI is carried out
within each block separately, independently of other blocks.

Given the notion of a limited temporal window, our approach is then to divide thevideo se-
quence into blocks ofN frames, whereN is the length of the temporal window, as shown in Fig. 1.
VMTI is carried out in each block separately: theN frames in the block are registered to the cen-
tral frame in the block; a background model is formed from the stack ofN registered frames; and
frame differencing within the block carried out for each frame to producethe VMTI results. The
key observation in the approach is that a valid background model can be formed from any contigu-
ous set of frames aroundf , and not necessarily the frames directly previous tof in the sequence.
Each framef in the block may therefore be compared to a background model constructedfrom
theN frames within that block. This approach allows for the efficient and computationally simple
algorithm of division into blocks as shown in Fig. 1.

It is important to note that the approach also allows a parallel implementation of VMTI, as
the independent processing of blocks can be carried out on separateprocessors. The VMTI results
may then be recombined seamlessly into a continuous sequence. We may exploitthis fact to devise
a near real-time solution to VMTI on relatively cheap non-specialised hardware. The parallel
implementation does however entail an inherent lag: Assuming sufficient processors for real time
processing, the lag isP × N frames, whereP is the number of processors. Further details on
performance of the algorithm are given in a comparative analysis in Section 4.

2.3 The Registration Process

The ADSS includes a number of well known image registration techniques thatcould be ap-
plied to video data, including wavelets [42] and optical flow [31]. In this application, the favoured
registration algorithms are the hierarchical, region based (or more precisely image based) correla-
tion technique [45], and more so, the feature-based technique described below.

We report here our method of video registration based on a feature tracking algorithm of
Kanade, Lucas and Tomasi [54], known as “KLT”, which has shown consistently good results
over a wide range of video imagery. It is a mature feature tracking method that is well established
in the computer vision community for tracking features in video sequences forthe purpose of
determining structure from motion [28]. In the KLT algorithm, small features such as corner
points are extracted and tracked based on a “corneredness” measure, derived from the eigenvalues
of the autocorrelation of the image intensities within a window, and the use of a dissimilarity
measure to determine the affine transformation. For our purposes, the tracked features are simply
used as control points to which a frame-to-frame parametric registration model is fitted (either
affine or projective) and used to warp each frame to the common frame of reference. From here
background modelling and frame differencing can be applied to yield the larger objects that we
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wish to segment and track,e.g., people, cars and other objects. This was a good opportunity to
leverage an existing technology implemented in ADSS for shape from motion, byutilising the
modular design and framework of the ADSS architecture.

The registration process may be formalised as follows: given a set of feature pointsP in frame
F that have been tracked and correspond to a second set of pointsP

′ in some other frameF′, they
may be related using via the matrix equationP

′ = PA. HereA is 3 × 3 matrix capturing the
parameters of either an affine or projective transform, andP andP

′ are matrices of points stored
in rows as parametric triplets,(x, y, 1). The equation can be solved forA using a simple least
squares fit to obtain the best fit solution for either the affine or projectivecase. We may also obtain
a measure of the reprojection error, or the degree to whichA fits the dataP andP

′, by computing
the average difference:

Ae =
1

N

N
∑

i=1

‖P′

i − (PA)i‖, (1)

wherei is an index into theN points of the point setsP′ andPA.

The matrixA is used as a model of the mapping function relating the imagesF andF′, denoted
herein by the relationF′ = FA. In practice however, the registration of imageF

′ to the domain
of F can then be done in either the forward or backward direction. In the forward direction, each
pixel in F

′ is directly transformed to the domain ofF using the estimated mapping function,A.
However, due to rounding and discretisation errors, this can lead to holesand/or overlapping pixel
values. For this reason, the backward direction is usually preferred and is the method we adopt in
our work. In this case, the inverse transformA−1 is computed and each coordinate inF is mapped
to the domain ofF′, from which a pixel value is computed fromF′ by interpolation. There are
various options for interpolation method, such as nearest neighbour, bilinear, quadratic and least
squares; we prefer bilinear interpolation because it is simple, efficient and yields acceptable results.

Figure 2 shows an example taken from a scene of urban surveillance. The two frames at
the top of the figure are 50 frames apart, with feature points superimposed inwhite. The frame
at the bottom of the figure is the registered version of the top frame in the sequence, using an
affine registration model. The KLT algorithm has been applied to the sequence trackingN = 200
features. Features that are lost are immediately replaced by new featuresso that the maximum
number of features is represented in any given frame. It is not alwayspossible to find the maximum
N features however, in particular in cases for largeN and/or frames with relatively few features.
The number of feature correspondences between any two given frames generally falls well short
of N , as points are continually lost as the distance between frameF and frameF′ increases.

2.3.1 The Kanade, Lucas and Tomasi (KLT) Algorithm

For the KLT algorithm, we use an implementation written by Birchfield [4] that we have
modified slightly to improve its’ speed. The algorithm as implemented works as follows.

The central idea behind the KLT algorithm is to track features across successive frames of the
video sequence. The features themselves are defined in a manner that increases their likelihood
of being tracked across the frames — hence the theme of “good features totrack” in the titles of
published papers in the area. Candidate features are computed from the smallest of the eigenvalues
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Figure 2: Feature tracking for video registration. Top and middle: two frames from the sequence.
Bottom: Top frame registered to the middle frame using affine model fitting to thetracked features.
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λ1, λ2 of the matrix of gradients at each pixelx of a frame,

Z(x) =

(

g2
x(x) gx(x) gy(x)

gx(x) gy(x) g2
y(x)

)

(2)

wheregx(x), gy(x) is the image derivative at a pixelx in the x andy direction, respectively.
The matrixZ is intimately related to the equation solved during the tracking across frames as we
will see in a moment. The pixels in the first frame are ranked in descending order of the smaller
eigenvalue for each pixel,min(λ1(x), λ2(x)), and the topN pixels in the list are selected as
features for tracking. The list is winnowed before the selection occurs so that the feature points
are not too closely spaced. A simple but significant speedup is obtained if particularly small
eigenvalues are dropped from the sort.

Once the feature points have been selected, the next step is to determine theirlocation in
subsequent frames. This is done by firstly modelling the transformation between each frame as a
displacement, where the dissimilarity between two windows is expressed as [54]

ǫ =
∑

x∈W

(Fn+1(x + d) − Fn(x))2 dx (3)

whereW represents a window around the pixelx with valueFn(x) in then-th imageFn which
moves to the positionx + d in then + 1-th imageFn+1 in the sequence. Then the location of a
particular feature in the next frame can be found by minimising the dissimilarity measure (3).

By taking a Taylor series expansion of (3) about the pointFn+1(x) truncated to the linear term
and using vectorisation operators and Kronecker products for the resulting equations [54], (3) can
be approximated as

Td = e, (4)

where

T =
∑

x∈W

Z(x),

d =

(

dx

dy

)

,

e =
∑

x∈W

(Fn(x) − Fn+1(x + d))

(

gx(x)
gy(x)

)

anddx, dy are the displacements in thex andy directions, respectively. To find the displacement
for each feature, we repeatedly solve (4) ford, with the starting assumption that the displacement
of the feature between images is zero, until the change in displacement fromone iteration to the
next is small. If the iteration limit is exceeded, or the determinant ofT is too small, then the
feature is deemed to be lost and is dropped.

After the translation for each feature has been found, a consistency check on the feature is
undertaken by transforming back to the very first frame in which it was detected, and if it has now
become too dissimilar (via (3)) it is deemed to lost. We found that a simple translationmodel was
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sufficient for our purposes, although an affine consistency check isalso catered for in the code
by Birchfield [4]. Note that bilinear interpolation is used to resample the images toaccommodate
sub-pixel translations. The implementation employs a multi-resolution approach tothe tracking to
provide good initial conditions for the displacement at the higher resolutions.

When the number of features has fallen below a threshold, a process is initiated that adds new
features to the existing ones that have been successfully tracked.

2.3.2 The Iterative Registration Strategy

An important issue to be considered in the registration process is the compound error that
occurs when sequentially registering frames in a video sequence. For example, the following
‘cascaded’ registration strategy could be used to register a sequence of N framesFi:

F2 = F1A1,2

F3 = F2A2,3 = F1A1,2A2,3, . . . ,

FN = FN−1AN−1,N = F1A1,2A2,3 . . .AN−1,N (5)

HereAi,i+1 is the transformation (e.g., affine or projective) required to register frameFi to frame
Fi+1. For a sequence ofN frames then, registering frameF1 to frameFN requires a cascade of
N − 1 separate transformsAi,i+1, i = 1 . . . N − 1. Each of these transforms will involve some
error in calculation, and cascaded them will produce a compounded error that can rapidly become
unacceptable for the purposes of VMTI.

For example, Fig. 3a shows a plot of the reprojection errorAe (defined in Eq. 1) versus frame
number for a simulated data set. Here the data set consisted of200 random(x, y) coordinates
with valuesx, y ∈ [1, 50]. An arbitrary affine transform was specified and applied iteratively
to the data set100 times to simulate a fixed camera motion for100 frames. Gaussian noise of
mean zero and variance one was then added to the data set to simulate the error in feature position
measurement. As can be seen from the figure, the registration error increases almost linearly
with frame, until eventually it is almost ten pixels. The registration process by this stage will
produce frame registrations with an unacceptably high degree of error and will be unsuitable for
the purposes of background modelling.

Using the method of feature tracking however, there is a simple way to significantly mitigate
the effects of compound error, because we do not need to rely on a cascade of affine transforms.
If we consider again registering a sequence ofN framesFi, if we have successfully tracked all
points through theN frames then we can apply the following ‘non-cascaded’ registration strategy:

F2 = F1A1,2

F3 = F2A2,3 = F1A1,3, . . . ,

FN = FN−1AN−1,N = F1A1,N

9
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(a) (b)

(c) (d)

Figure 3: (a) Reprojection error versus frame number of a simulated data set, using a ‘cascaded’
registration strategy. (b) Using a ‘non-cascaded’ registration strategy. (c) Feature points are lost
as the frame increases. (d) Feature points are restored when the number falls below a certain
cutoff.
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The idea here is that to register frameF1 to FN we may replace the cascade ofN − 1 affine
transforms with the single transformA1,N , estimated directly from the point setsP1 andPN

via the known point correspondences. Using the simulated data describedabove, the error as the
number of frames also increases in a linear fashion, but its rate of growth issignificantly reduced,
as shown in Fig. 3b. This small increase in error per frame is due to the rounding error generated
when iteratively applying the specified affine transform.

This ‘non-cascaded’ strategy however relies on the fact that all of thepoints have been suc-
cessfully tracked throughout the frame sequence, which is usually not the case (for example, a
proportion of the tracked points will leave the field of view as the camera pans). More realistically
then, there is a point attrition that occurs during tracking that may be as high as a few per cent per
frame. As the number of successfully tracked points declines through the sequence, the error in
the registration model increases and eventually overtakes the error that would have occurred had
the ‘cascaded’ registration strategy in Eq. (5) been used. A plot of this error is shown in Fig. 3c
using the above simulation data. Here, the point attrition rate was set to two pointseach frame
(i.e.one percent).

In summary, in order to minimise cascaded registration error, a ‘non-cascaded’ strategy can
be used while there are sufficient tracked points to produce a good fit to the data. When there
are insufficient successfully tracked points however, it is best to restart the registration process
using a fresh set of feature points. In our implementation, we determine whento do this using a
simple user defined cutoff value specifying a minimum acceptable number of feature points. Such
a strategy results in the following formulation for the registration of frameFN :

FN = F1A1,k1
Ak1,k2

. . .Akm,N−1.

Here, frameki designates a frame where the number of feature points successfully tracked fell
below the specified level, and the tracking process was reset. It then continued to frameki+1,
where again the tracking process was required to be reset,etc.Based on the above simulations,
Fig. 3d shows a result using the combined ‘non-cascaded’ strategy with periodic resetting of the
registration process. Here the cutoff value was set to50 points.

2.3.3 Removing Outliers from the Set of Feature Points

In the feature tracking method, it is important to identify feature points that correspond to
moving targets and remove them from consideration in the model fitting stage. This makes the ap-
proach more robust when, for example, there are large moving objects in the scene or when there
is a significant amount of noise. On the other hand, failure to remove outlierscan result in rather
poor fitting of the registration models, which underpin the background modellingand subsequent
motion extraction stages. The algorithm we use is called “RANSAC” (RANdom Sample And
Consensus) [28], which is designed to fit models to data in the presence ofa significant number
of outliers. This algorithm is used widely in the computer vision community, in particular in the
computation of scene homographies for constructing shape from motion. The algorithm could be
applied to remove unwanted correspondences from other methods of registration,e.g., optical flow
vectors or tie-points. We would argue however that area-based methodsthat yield tie-points tend
to smooth the motion due to moving targets into the estimates of the positions of tie-points.The
RANSAC algorithm can be summarised as follows:
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Objective

Robust fit of a model to a data set of feature correspondencesS that contains outliers

Algorithm

• Randomly select a sample ofs data points fromS and instantiate the model (in our case, a
parametric affine or projective transform) from this subset

• Determine the set of data pointsSi which are within a distance thresholdt of the model.
TheSi is the consensus set of the sample and defines the inliers ofS.

• If the size ofSi (the number of inliers) is greater than some thresholdT , re-estimate the
model using all the points inSi and terminate

• If the size ofSi is less thanT , select a new subset and repeat the above

• After N trials the largest consensus setSi is selected, and the model is re-estimated using
all the points in the subsetSi

The feature setS is the set of feature correspondences between a given pair of framesin the
sequence. We have found that in order to distinguish between background motion, foreground
motion and the measurement error inherent in feature location, this pair of frames should be sepa-
rated by at least 10 frames. Other values typical of our implementation are1 < t < 10, T > 50%
of the number of matches, andN ∼ 2000 iterations.

An example is shown in Fig. 4, where a frame from a video sequence taken from a ground-
based handheld HDTV camera is illustrated (a subset of the frame is shown here for clarity). The
KLT algorithm has been applied to track 500 features through the continuous sequence, which was
subject to unconstrained camera motion and zooming. The white crosses arethe inliers determined
by the RANSAC algorithm and are used to estimate the registration model and the black crosses
are outliers and are ignored. The feature points tracked on moving targetsare deemed to be outliers
and a number of points in the background of the image have been classified as outliers as well.
This occurs because we have set the distance thresholdt in the algorithm quite low so as to be
sure to remove all the feature points that correspond to moving targets. We also require the point
to be tracked through a certain number of frames (e.g., 10) in order to provide a sufficiently wide
baseline to distinguish between background motion, foreground motion and the measurement error
inherent in feature location. Those points with insufficient track length arealso deemed outliers.
Generally there are ample inlier points remaining to fit a good registration model.

2.3.4 Error Correction

By analysing the reprojection error of the registration model, it is possible to determine au-
tomatically when the registration process has failed and to implement a recoverystrategy. This
is particularly important when generating mosaics of video imagery, as the process relies on an
accurate registration through the entire video sequence. Figure 5 showsclockwise from top left a
set of three consecutive frames from a video sequence of Mallala Raceway in South Australia. A
mosaic of this scene is required but, as can be seen by the sudden jump between the second (top
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Figure 4: Removing outliers from the feature set. White crosses indicate inliers used for image
registration and black crosses indicate outliers.

right) and third (bottom right) frames, the signal received at the ground station has momentarily
dropped out. Typically, off-the-shelf mosaicing packages will break down in such cases because
they require smooth continuity through the sequence of frames. The feature points that have been
tracked have also been lost over this region and therefore our estimates of the registration model
will be inaccurate. This is directly reflected in the reprojection error, as defined in Eq.(1): The
bottom left of the figure shows a plot of this error and reveals a pronounced increase in error when
there is a loss of signal. It is a simple matter to implement a threshold (at, say, a value of 5) to
automatically determine when such errors occur.

We have subsequently implemented a simple error recovery strategy that will omit a block of
corrupted frames from the video sequence and register the two frames ateither end of the block,
to form a continuous mosaic. The process takes the point sets from these two frames and tries
to find the optimal translation between the two disparate point sets with noa priori correspon-
dence information, using a brute force search of orderN2. The essential idea of the algorithm is
to use a pattern matching approach that translates one point set to the other,through all possible
translations, establishing correspondences through a simple distance threshold. The process relies
on at least some spatial overlap between the two points. For point sets that have of the order of
hundreds of points, the implementation time of the algorithm is acceptable. An alternative ap-
proach reported in [10] can find the optimal affine transform between twopoint sets directly, but it
assumese.g., that the point sets overlap spatially (a generalisation of the algorithm is in progress).

Objective

Find optimal translation between the two point setsPi, i = 1 . . . N andP
′

j , j = 1 . . . M , with no
correspondence information.
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Figure 5: Clockwise from top left: Three consecutive frames from a sequence with dropout and
other errors in signal transmission. Bottom left: The reprojection error can be used to automati-
cally predict when registration has failed.

Algorithm

For all i = 1 . . . N , j = 1 . . . M

• Form a translation setP′′ = P + ti,j , whereti,j = P
′

j − Pi

• Determine set of correspondences betweenP
′′ andP

′: point P′′

n corresponds to pointP′

m

if the distance‖P′′

n − P
′

m‖ < t

• Record mean distancēd = 1
K

∑K
k=1 ‖P

′′

nk
− P

′

mk
‖, whereK is the number of correspon-

dences

The optimalti,j is the one that gives the lowest mean distanced̄ over all i, j. Given the optimal
translationti,j , a solution for the parametric transform between the setsP

′ andP
′′ may be found

by solvingP
′ = P

′′
A using a least squares approach.

The result applied to the example in Fig. 5 is shown in Fig. 6. Here the mosaic hasbeen formed
successfully with no apparent error in the result. We plan to investigate methods to incorporate
available meta data such as geocoding information to improve the mosaic result. Inparticular, our
collections include highly accurate positional information that describes camera location and pose
and this information may be incorporated into the solution through the use of techniques such as
bundle adjustment [51].
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Figure 6: Resulting mosaic in region of signal drop out, after error correction has been applied.

2.3.5 Tracking in Relatively Featureless Regions

One of the drawbacks often cited with regard to feature tracking is that it is generally not
applicable to video of scenes that are featureless. However, we have yet to find a real example
where this has been the case in our airborne and ground-based sensor collections (other domains of
imagery might pose a problem however, for example tracking and recognising features in imagery
of faces, which have large regions of smooth texture). For example, in theinterlaced standard
definition frame shown in Figure 7, the subject is a relatively featureless desert terrain but there
is still sufficient features in the scene to find and track over the entire scene (as shown in black
and white at the bottom of the figure, and discussed further below). This particular sequence
consisted of 29 non-consecutive frames taken from a moving airborne platform, where images
could be two to four frames apart. We found that the algorithm tracked features that could shift by
as much as 15 pixels between frames. The camera motion in the sequence is parallel to the vehicle
motion and there is significant vertical furrowing evident in the imagery. Thisimagery posed
some problems for optic-flow based techniques,e.g., with interlacing there is more “energy” in
the vertical direction and this tends to erroneously weight the registration in the vertical direction.

2.3.6 Registration Performance Summary.

We have investigated two registration techniques with regard to VMTI, one region-based and
one feature-based. The approach used in the prototype VMTI system with some success was
region-based. This hierarchical, correlation-based technique, was outlined by Privett and Kent
[45]. Our attention has now shifted to the feature-based approach described above and by Joneset
al. [36]. Both algorithms have the capability to model the image-to-image transformation with a
complexity up to projective.

Moving target detection in video imagery usually operates on two frames separated by a short
time interval, during which the camera motion is relatively uncomplicated; an affinetransforma-
tion model is usually more than sufficient. Indeed there are strong arguments infavour of keeping
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Figure 7: Example frame from a sequence that is relatively featureless. Features areshown after
classification with the RANSAC algorithm, where black points indicate outliers.

the degrees of freedom low to prevent overfitting, particularly if the scene contains unevenly dis-
tributed 3-D structure.

Background modelling requires frames to be registered which are separated by longer time
intervals during which time the potential exists for more complex platform and camera maneuvers
to have taken place. This presents several problems. Firstly the frame to frame mappings may
need to be more complexi.e. projective. These additional degrees of freedom offer the potential
for overfitting or for misregistration by convergence to a local minima. In a similar vein, the range
of durations between pairs of frames means that, in the case of our region-based approach at least,
the optimisation schedule for the algorithm must be comparatively loose so as to encompass the
more highly separated pairs. At best this will impact on execution time, and at worst it may impact
on the precision of the convergence or may cause convergence to implausible minima.

3-D structure presents serious problems. Buildings, although usually being weakly textured,
are generally strong exhibitors of the types of features that are often integral to the registration fit
metric (i.e. lines and corners).

The region-based approach considers the correlation between the two whole images. Given
imagery containing a textured ground-plane and some 3D objects it will reacha compromise regis-
tration (that could be viewed as an average weighted by image local structure density). Our feature
based approach is in some sense more robust. While the proportion of features emanating from the
3-D structure is low, it should have little or no impact. However, because the 3-D structure is high
in strong corners, a comparatively low proportion of the imagery being populated by structures
such as buildings may cause alignment to building roofs rather than the ground, particularly if the
buildings are of uniform heighti.e. the relative displacement between corresponding corners is
uniform.

These expectations have been borne out by results. We’d expect the region-based approach to
recover from translation of 10-20 % of the image width and 10-20 degreesof rotation. Performance
is reduced when the images exhibit large perspective variation (change inelevation angle). The
feature based approach has been applied to a large and varied set of imagery and has performed
well, even when the imagery has exhibited relatively weak and sparsely distributed features. In
the presence of 3-D structure, the region-based approach solution tends to drift around locally
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from frame to frame, and there is a gradual increase in registration erroras the platform moves
further away from the target image. Under the same conditions, the featurebased approach gives
precise alignment of building roofs resulting in more pronounced misregistration of the ground
plane features.

2.4 Background Modelling

This section considers the construction of a background model using those anomalies in indi-
vidual video frames that can be identified. One advantage of this approach over image differencing
is that, usually, the whole silhouette of the anomalous object is made apparent rather than (pre-
dominantly) changes in occlusion and disocclusioni.e. two incomplete object segmentations or, in
the extreme cases, two complete segmentations per target (and a resulting association problem).
In addition, the use of a background model means that an object introduced to a scene (such as a
briefcase) will be persistently visible even if static.

The main considerations with regard to constructing the background model are: choice of
background function, choice of colour space, the methods used for bootstrapping and maintaining
the model, and the decision mechanism for identifying statistical outliers. The most appropriate
choice depends on the scene content and how it changes over time, imagingconditions,etc.As a
result, many options are available, and ADSS can be configured accordingly.

2.4.1 Background Functions and Maintenance

Background models are usually constructed from a number of frames. The colour distribution
of each pixel over time could be modelled by treating each colour component independently or by
adopting a multivariate route. We consider both. The assumption is that the camera is static and,
therefore, that over time, a pixel images the same area of the scene repeatedly. As we have seen,
some camera motion can be removed by registration, however, the background model should be
capable of capturing lesser movements resulting from camera shake.

The background is a dynamic system, and its model must be regularly recomputed or updated
accordingly. This is known as background maintenance. The sophistication of these update tech-
niques varies enormously, from straightforward iterative update rules totechniques that consider
the motion histories of component objects. Depending on the duration of the observation, these
updates may need to accommodate gradual illumination changes (e.g., sun precession during the
day), sudden illumination changes (e.g., electric light switches and cloud/sun transitions) and the
introduction of shadows cast by objects within and outside the scene. Theymust also accom-
modate changes in the stability of the camera (i.e. shake) and persistent scene movement such as
moving vegetation. And at some point, it would be desirable that objects introduced to the scene
that present no interest should become part of the background model.

Overview

The Gaussian background model is reasonable for characterising the pixel variation in a static
scene, however, the mean and variance will be biased by statistical outliers, including moving
objects. We characterised the distribution using robust statisticsi.e.via the median and the median
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absolute deviation from the median, respectively. This provided a more satisfactory model in the
presence of outliers when dealing with small numbers of frames, and in particular, the system
can be bootstrapped without a need for the scene to be evacuated of moving objects. Given the
background model,(µ,σ), outliers can be identified by exceeding some user-specified multiple of
standard deviations from the mean.

A Gaussian model can be made to adapt to slowly changing illumination conditions by recur-
sively updating the model using a simple adaptive filter such as (6) and (7) below. Koller [37]
and others have used Kalman filters for the adaptation. However, in outdoor environments, windy
conditions may precipitate camera shake and vegetation movement, both of whichmay result in
several object classes being in view over an extended period of time. Each of these should be
modelled individually. The most common approach is to employ a mixture of Gaussian model
[26, 27, 24, 39, 41, 40]. Grimsonet al. used between 3 and 5 Gaussian distributions - notionally
one per background class. Similarly, Friedman and Russell [24] used a three Gaussian model (as
have we) to represent road, shadow and vehicle distributions.

The mixture is weighted by the frequency that each Gaussian explains the background. The
mathematical model is given by

{X1, ..., Xt} = {I(x0, y0, i) : 1 6 i 6 t}

P (Xt) =
k
∑

i=1

wi,tη(Xt, µi,t, Σi,t),

wherewi,t are mixture weights, and

η(Xt, µ,Σ) =
1

(2π)
n

2 | Σ |
1

2

e−
1

2
(Xt−µt)T Σ−1(Xt−µt).

And we take

Σk,t = σ2
kI

for ease and rapidity of inversion. A small offset is added to the variances to prevent division
by zero when no image noise is present. This might result from local image saturation or from
other imaging peculiarities. The mixture of Gaussians can be derived using an Expectation Max-
imisation (EM) clustering algorithm, variations of which are numerous. In our experiments we
evaluated an unsupervised EM algorithm proposed by Figueiredo and Jain [23] together with a
k-means algorithm [57]. The former selects the number of component distributions and does not
require careful initialisation. We have used this approach very successfully for partitioning target
segmentations into spatio-colour clusters, however, in this endeavour, thedata was sufficiently at
variance with the ideal (due to noise, pixel drop out etc) that the author experienced serious reli-
ability issues. At present we favour thek-means approach. This is an iterative process based on
the distances of samples to current estimates of cluster centres. Unlike the EMalgorithm which
generates overlapping Gaussian distributions,k-means partitions the samples neatly into nonover-
lapping labelled clusters [11]. This is appealing because it offers some potential to map the cluster
back to the source land-use or object in the scene.K-means requires the desired number of clus-
ters be specified, however, in non-ideal data it is still possible that a particular pixel may exhibit
a lesser number of clusters. This must be recognised in the resulting output before an attempt is
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made to detect anomalies. The k-means approach suits a 2D, orthogonal colour space well (Sec-
tion 2.4.2). Inputs to thek-mean clusterer may be standardised to prevent spurious domination of
one channel.

Background maintenance for the Gaussian Mixture model was done using the following update
rule [55] once the corresponding distribution had been identified

wk,t = (1 − α)wk,t−1 + α(Mk,t),

whereα is the learning rate andMk,t is 1 for the matched model but otherwise 0, and

µt = (1 − ρ)µt−1 + ρXt, (6)

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt). (7)

And a second learning rate,ρ, is given by

ρ = αη(Xt | µk, σk).

If Xt does not belong to any of the K distributions (to withinnσ) then a new distribution is created
with a corresponding mean, high variance and low weight.

These approaches can adapt to gradual and more rapid changes butsudden switches in lighting
changes still present serious problems. Proposed solutions include the use of hidden Markov
models. These have been used to model three state environments: foreground, background and
shadow [49]. Edge features have also been used to model background [61, 34] in an effort to
achieve illumination invariance.

An Airborne Focus

In the case of an airborne moving camera however, the extent of the temporal window is
restricted and so the contribution made by moving objects to the formation of the background
model is relatively high. Background modelling based on standard Gaussian statistics tends to
include this contribution into the background and thus diminish the effectiveness of VMTI. We
have found that robust statistics, such as the median filter and maximum absolute deviation, yield
superior results and are the preferred method of background modelling inthe case of the moving
sensor. Figures 9 and 10 (on the following pages) illustrate the benefit ofusing robust statistics
by the relative impact on background variance caused by a person moving through the scene (at
low sampling rate).

More formally, given a stack ofN registered imagesFi, the background modelB is given by

B(x, y) = median{Fi(x, y), i = 1 . . . N}. (8)

An important consideration is that, although the imagesFi are registered to one another, they
do not typically fully overlap (in fact they might overlap by as little as fifty percent). The total
combined area of the stack of imagesFi is inevitably larger than that of any single frame. In order
to use as much information as possible to construct the background model, and to avoid unwanted
boundary artifacts, we endeavour to constructB over the entire combined area. However, a given
coordinate(x, y) in B may not be contained by allN frames, in particular at coordinates on the
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Figure 8: Mean background model in red, green, blue colour space.

periphery ofB. For such coordinates, we can only compute the median filter over those frames
that contain that coordinate. If the number of such frames falls below some acceptable level, say
five, we do not compute a background model for that coordinate at all, asthe statistic become
unreliable.

An accepted robust statistic for variance that can be used in conjunction with the median
statistic is the median absolute deviation, or MAD, defined by

MAD(x, y) = median{‖Fi(x, y) − B(x, y)‖, i = 1 . . . N}, (9)

whereB(x, y) is the background model as defined in Eq. (8). It is usual to make MAD consistent
with a normal distribution by dividing byΦ−1(3

4), roughly 0.6745 [30]. Again, we can only
compute the MAD over those frames that contain the given coordinate.

2.4.2 Colour Model

All commonly used colour transformations are available in ADSS. In this application RGB
was not pursued due to the high degree of correlation between the red, green and blue channels,
and the dominance of intensity (Figure 8). Essentially, the discriminatory potential of the colour
information is not fully realised, and the intensity and colour components cannot be assessed
independently.

HSV (Hue, Saturation, Value) does have the desirable property of separating intensity from
hue (Figure 11), one benefit of which is the ability to use a simple heuristic to distinguish between
object movement and shadow change. However, the continuous, circular nature of the hue feature
results in a discontinuity (seen here in the sky (Figure 11)) which results in aregion of high
variance when changing scene and imaging conditions are considered (Figure 12).

It seems that this characteristic of HSV space is usually ignored by the community, and indeed
this may be reasonable depending on the operations being applied to the hue values. Some of our
discomfort with the hue feature was soothed by the following approximations which were used
successfully in some of our experiments. The angular mean is given by

(cos(θ), sin(θ)) =

(

1
n

∑

i cos(θi),
1
n

∑

i sin(θi)

r

)
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Figure 9: Background variance in red, green, blue colour space.

Figure 10: Robust estimate of variance in red, green blue colour space.

Figure 11: Mean background model in HSV (Hue, Saturation, Value) colour space.

Figure 12: Background variance in HSV (Hue, Saturation, Value) colour space.
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Figure 13: Mean background model in Principal Component Space (PC1, PC2, PC3) colour
space.

where

r2 =

(∑

i cos(θi)

n

)2

+

(∑

i sin(θi)

n

)2

and the angular variance is given by2(1 − r) [58].

A principal component based feature space has also been considered(Figure 13) based on
the work of Ohta [43] and Dodd [21]. They noted that images belonging to acommon class,
such as natural outdoor scenes, have very similar principal components. These are obtained by
diagonalising the covariance matrix of the RGB feature vector, and can be approximated by a
single set of transformations that can be applied to any image in the class. It should be noted,
however, that as a result of making this generalisation, the transformed components will contain
some correlation.

With regard to the set of outdoor images that we examined, in all casesPC1 is approximately
(1
3 , 1

3 , 1
3)t, PC2 is dominated by either(−1

2 , 0, 1
2)t or (1

2 , 0,−1
2)t , andPC3 by (−1

4 , 1
2 ,−1

4)t.
These findings are in agreement with those of Ohta, who then proceeded toderive a set of features
f1, f2, andf3 for representing colour information.

f1 =
R + G + B

3

f2 =
R − B

2
or f2 =

B − R

2

f3 =
2G − R − B

4

To determine the information held by a particular PC image, it can be replaced byits mean,
and the PCA transformation inverted to produce a modified RGB image for comparison with the
original. Clearly,f1 is the same as the Value feature in HSV. The second PCA is a colour feature,
and the third component captures any residual information, that is, brightcolours and some texture.

In his work on segmenting images of natural outdoor scenes, Ohta [43] compared the per-
formance of his feature set with seven others in common use. He found very little difference,
and considered it due to the almost 2 dimensional nature of colour information, i.e. intensity and
one chromatic feature. Land’s psychophysical experiments of the 1950s drew similar conclusions
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[38]. He demonstrated that perceptual colour is almost two dimensional, andshowed that the per-
ception of colour is not purely a local phenomenon but is dependent on the spatial content of the
scene.

Since we regard perceptual colour as being almost two dimensional, intensityand a colour
component, we usually consider the third component to be noise and discardit. A two dimen-
sional, orthogonal colour space is very appealing both for its ease of manipulation and for the
computational speed that it promotes.

Summary

With regard to the median-MAD background model, much of the airborne imagery processed
to date has been treated as monochrome imagery, that is, it is left as is, or if necessary an intensity
feature has been derivedi.e.I = (R+G+B)/3. In some instances, the mapping0.3R+0.11G+
0.59B has been used to mimic the response of the human visual system.

ADSS supports most colour spaces in common use. Some of these, principallythe HSV and
PC spaces, have been applied to ground-based imagery. In these cases, each channel has been
treated independently and the results OR’d, that is, if an anomaly is found in any of the channels
then motion is assumed.

2.5 Anomaly Detection

Given a background model in the form of robust estimates of mean background (B) and its
standard deviation, it is trivial to compute the probability that a particular pixelis consistent with
the background model (in terms of standard deviations). Outliers can be identified using a statisti-
cally meaningful multiple,n, of the standard deviation.

Mi(x, y) =
Fi(x, y) − B(x, y)

MAD(x, y)/Φ−1(3
4)

> n. (10)

HereMi is a binary motion image corresponding to frameFi and(x, y) is the set of coordinates
in frameFi.

As the imageMi is in the registered frame of reference ofFi, it is transformed back to the
frame of reference of the original unregistered video frame corresponding toFi. This is a simple
matter of applying the inverse of the transform that was used to generateFi. The resulting stack
of motion images may then be fed into the tracking stage,e.g., a particle filter [48] or a simple
heuristic tracking algorithm (such as that described in the following section). It should be pointed
out that, because it is based on frame differencing, the motion estimationMi does not produce
strong evidence in favour of a moving target if, by chance, it occupies asimilar position in colour
space as the background. The result may be incomplete moving objects or objects that are missed
altogether. We suggest that using a target/foreground model could alleviate the fragmentation
problem. The impact of registration errors and occlusion changes on the background model, and
consequently on detection performance, should also be borne in mind. As the sensor moves,
regions on the ground occluded by 3D structures will gradually change.The impact is difficult to
predict as it depends on image content. However, relative movement of image structure (whether
on the ground or elevated from it) will lead to false alarms, and as the grey level variance estimate
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close to a structure is likely to be raised, changes that take place close to such region boundaries
are more likely to remain undetected. This places additional heavy constraintson the size of the
temporal window.

2.6 Heuristic Tracking Algorithm

As the final part of the VMTI implementation in ADSS, a simple but effective heuristical
tracking algorithm was implemented to take the output of the VMTI process and produce ADSS
detection messages for moving targets. Other tracking algorithms, such as particle filters and
probabilistic multi-hypothesis tracking (PMHT) are currently under development in ADSS and
will be the subject of a future report. The heuristic algorithm works on the concept of temporal
integration, or the accumulation of objects in the same location over a period of time. The longer
the object is sustained through the time in the VMTI sequence, the more likely it constitutes a
true moving target. In contrast, noise in the motion estimation,e.g., caused by flickering light or
changes in perspective, is not typically sustained over a long period of timeand can be filtered out
by the temporal integration process.

To begin with, a user specified thresholdt is applied to the motion estimation in order to
produce binary images which may then be labelled for further analysis,

Mi(x, y) =
Fi(x, y) − B(x, y)

MAD(x, y)/Φ−1(3
4)

> t.

Here the thresholdt typically has a value ranging from2 to 3 and essentially specifies the number
of deviations from the expected background value that a pixel must haveto be considered part of a
moving target. The application of a threshold tends to leave only those parts ofthe VMTI imagery
for which there is strong evidence of moving objects. Typically however, acertain amount of
specular noise is also passed by the thresholding process. The stack ofimagesMi may then be
labelled independently and objects thresholded on the basis of user specified thresholds applied
to simple shape attributes such as area and/or size of bounding box. This tends to remove a lot
of small impulse noise, and leaves larger objects caused by changes in illumination, movement
of trees etc. The connectivity of an object through time is then established byiteratively tracking
it through the sequence, using overlapping shape attributes. More specifically, objectA in one
frame is deemed to be connected to objectB in the next if its centroid lies within the bounding
box ofB. A path length can be assigned to each object, given by the number of framesthat it can
be tracked through the sequence. Objects may then be filtered on the basis of path length using a
user specified threshold.

An alternative method to 2D labelling followed by connectivity analysis is to use full 3D
labelling of the stack of thresholdedMi images, which automatically establishes connectivity
in the temporal dimension. Temporal integration is then realised as the computationof volume
statistics of the binary objects, which may be thresholded leaving only high volume objects that
are (typically) moving objects sustained over longer periods of time. However, the labelling of 3D
objects is relatively labour intensive and requires significantly more memory resources. Moreover,
a 3D labelling algorithm has yet to be implemented in the ADSS.
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3 Examples

In this section, we present some results produced by the VMTI subsystemon a range of im-
agery that highlight some of the issues that arise when implementing VMTI for amoving sensor.
A relatively straightforward example of VMTI is shown in Fig. 14. At the top left of the figure is
an example frame from a video sequence taken from an airborne MX20 sensor. A car is moving
along the road and the camera is following the car through the sequence. Itis standard interlaced
video of 24 frames per second, where each frame is of size704 × 480 pixels. One of the issues
with using interlaced video is that it can lead to artifacts like those shown in the topright of the
figure. Here the camera has panned suddenly and this results in a splitting ofthe separate com-
ponents of the interlaced frame. This effect will cause many registration algorithms to fail. For
example, optical flow based techniques will tend to find more “energy” in the vertical direction
and erroneously weight the registration in the vertical direction. A de-interlacing algorithm (e.g., a
simple sampling in the vertical direction) needs to be employed if such algorithms are to be used
with any reliability. The KLT registration algorithm however was very robustto this problem and
good registration results were obtained without the application of a de-interlacing algorithm. As
shown by the result at the bottom left of the figure, the VMTI results for such frames can exhibit
very high noise caused by the apparent difference between the frame and the model of the back-
ground. Although erroneous moving targets may well be found in this frame,the application of
the temporal integration can remove this noise, as shown by the result for thisframe at the bottom
right of the figure.

Another example, using a video from a handheld HDTV camera, is shown in Fig. 15. The
frame rate for HDTV video is typically 60 frames per second, where each frame is1280 × 720
pixels in size. The camera underwent unconstrained panning and zooming while following the
moving subject, as can seen by comparing the two frames at the top of Fig. 15.Unconstrained
zooming can pose significant problems for registration algorithms that are sensitive to scaling.
Although our feature tracking method is in fact sensitive to scaling, and features are lost during
zooming, they are immediate replaced by new ones. Overall then, the approach is robust to zoom-
ing. The sequence also contains significant movement frome.g., leaves on the trees and bushes,
occasional cars moving through the scene, workmen in the background of the scene and flickering
sunlight off cars and windscreens. All these examples of motion in the scene were successfully
discounted from the video registration process by applying the RANSAC algorithm to the feature
points that were tracked, as discussed in Section 2.3.3. This provided a very solid background
stabilisation from which reliable VMTI results could be obtained, as shown bythe examples at the
bottom of the figure. Here the subject has been successfully detected asa moving target, although
the subject is incomplete in parts because there is insufficient discrimination between the intensity
of the subject’s clothes and the intensity of the background model that has been constructed. If
it is important to accurately delineate the boundary of the moving object, a further segmentation
process, such as a snake or watershed algorithm, could be applied.

The VMTI process extracts all objects in the scene that are deemed to be moving, and this
includes objects such as moving leaves on trees and fluctuating light patterns, which are generally
undesired for the purposes of VMTI. In our approach, this apparent motion can be removed during
the temporal integration phase. More sophisticated techniques may also be applied to discount ob-
jects on the basis of their movement patterns,e.g., to remove objects that do not have a consistent
direction of movement. The alternative approach, which has been widely adopted for the case of
the stationary sensor, is to use a background model based on multimodal Gaussian distributions.
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Figure 14: Example VMTI analysis on an interlaced video sequence taken with an MX20camera.
Top left: Sample input frame. Top right: Close up of interlacing striping caused by sudden camera
panning. Bottom left: Output image from VMTI process, showing excessivenoise from interlacing
artifacts. Bottom right: Result after tracking algorithm has been applied; the noise has been
removed by temporal integration.
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Figure 15: Example VMTI analysis on an non-interlaced video sequence taken with a handheld
HDTV camera. Top: Two sample frames showing unconstrained panningand zooming. Bottom:
Corresponding VMTI imagery showing moving objects.

This has the ability to automatically absorb periodic movement such as moving leaves and flick-
ering light into the background model, through the use of its multiple modes, so thatsuch motion
is not exposed in the frame differencing stage. As discussed above however, in the case of the
moving camera the extent of the temporal window used is very restricted and so the contribution
made by moving objects to the formation of the background model is relatively high. Background
modelling based on Gaussian statistics tends to average this contribution into the background and
thus severely diminish the effectiveness of VMTI. We have found that therobust statistics we use,
such as the median and MAD statistic, yield superior results. It could also be argued that the
classification and discrimination of different types of independent motion in the scene might con-
ceptually best be handled separately from the background formation stage. This allows a deeper
analysis of an object’s motion,e.g., by applying shape statistics and patterns of behaviour rather
than just pixel intensity distributions, and thus potentially more reliable discrimination.

Another example of VMTI on HDTV data is shown in Fig. 16, illustrating frames from a
video sequence taken of Parafield airport. The sequence is particularlychallenging due to the
high density of structures which can induce errors in registration and motion estimation, due to
the change in perspective of the structures as the camera moves through the scene. This means
that the temporal window used for VMTI should be relatively short so as tominimise the effects
of change in perspective. On the other hand, there is a wide array of moving targets in the scene
of different size, ranging from people, cars, trucks and planes. Asmany of these objects are
moving relatively slowly, the temporal window should be relatively long so as tominimise the
contribution made by these moving targets to the background model. In this example, it is not
possible to select the temporal window size to fully satisfy both constraints, and this leads to
two types of errors appearing in the VMTI results: erroneous moving targets due to perspective
errors and incomplete or missing moving targets due to insufficient background discrimination.
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Figure 16: HDTV sequence of Parafield airport, showing four examples of VMTI results. See text
for details.

In the top left frame of the figure, three objects have been detected. Only the top-most object
is a true moving target (a person walking across the tarmac); the other two targets are caused
by perspective errors. The top right frame again shows moving targets;this time a slow moving
plane has been detected but only its leading edge was found. This is because it is moving too
slowly for the selected temporal window size, and much of its shape (its wings and tail portion)
has therefore been partially absorbed into the background model. The bottom left frame shows a
similar situation, where this time it is the trailing edge of the plane that has been detected, along
with the cab of a moving truck. The final frame at the bottom right shows a relatively fast moving
van being detected, along with the leading and trailing edges of a slow moving car.

Perhaps one of the most difficult VMTI examples we have encountered is shown in Fig. 17.
Here the sequence is from airborne video surveillance taken with an MX20sensor. The targets to
be detected from the VMTI process are very small; the aim is to detect targetsthat would normally
be overlooked by the analyst. This example was used for the comparative analysis carried out and
reported on in Section 4. The top frame in the figure shows two such targets (cars on roads) circled
in white. The result from the VMTI process is shown in the bottom frame of thefigure. Here the
left most target, the dark car travelling down the road has been readily picked up by the VMTI
process. The central targets however are rather poorly resolved. Moreover, there is a significant
amount of noise in the VMTI results, due to misregistration errors in this cluttered environment.
This noise is much more intense in other parts of the sequence, when the camera pans or clouds
move through the sequence. Although these errors are fairly small in size,they are typically of the
order of the same size as the targets that are sought. Our standard heuristic tracking process, based
on shape analysis and temporal integration, has proven insufficient to reliably track the central
targets in the sequence. However, more sophisticated tracking techniques, based around Kalman
filtering and currently available from colleagues at DSTO [48], are able touse the output from
our VMTI process to track the targets through a significant amount of noise. We are currently in
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the process of implementing such algorithms in ADSS, and the augmented approach will be the
subject of a future report.

As a final example to illustrate the versatility of our VMTI approach, Fig. 18 shows a pair of
satellite images taken of a mining site in Australia at different times of the year. A typical problem
faced by the image analyst is to register such images together for the purposes of detecting change
between the imagery. We are able to cast this into a VMTI problem by simply defining the pair
of images as two consecutive frames in a video sequence. Our standard VMTI process of feature
detection, outlier removal, image registration and frame differencing may then be applied as is,
and the results from the VMTI process are the required change detectionresults (note that in this
case it is not necessary to construct a background model). The process works very well when
there is sufficient overlap between the images for the KLT feature trackerto track features from
one frame to the next. Typically the displacement between corresponding features must be less
than about 10 pixels. The process will not work well however when there is significant rotation
and/or scaling between the image frames.

4 Comparative Analysis

In this section we present the results of an evaluation carried out betweenour VMTI system,
which we will refer to as ADSS VMTI, and two other VMTI systems. The first,“Industry VMTI”,
is the result of a short-term contract of several months duration carriedout by a software com-
pany for DSTO, to deliver a real time VMTI system based on their existing intellectual property.
This was essentially a no-frills Windows application that demonstrated the company’s capacity to
implement real-time VMTI. The second, “ARIA” [12], is a VMTI system developed within the
MATLAB programming environment by Dr. Robert Caprari, ISRD, over aperiod of approxi-
mately 9 months and completed in March 2004. It currently operates at approximately 400 times
slower than real time, and for that reason it is not considered to be a viablesystem for deploy-
ment in its current form. It is hoped that in the near future the ARIA and ADSS VMTI systems
can be combined after ARIA is ported into ADSS, whereby the strengths of both systems can be
exploited.

4.1 Experiment and Results

For the purposes of comparing the three systems, a five-minute video sequence was chosen
and ground truth information extracted. The sequence was of standard definition (704 by 480, 30
frames/sec) IR airborne video surveillance from the ISR Testbed collectionand is the “difficult
example” that was illustrated in the previous section (in Fig. 17). The sequence recorded the
movements of a convoy of 3 targets as they undergo maneuvers through thehills of Woodside, SA,
and includes occlusions, fast camera pans, and footage of fast movingtraffic on a nearby freeway.
The ground truth consisted of a count of the number of actual moving targets present in each frame
in the sequence, as judged by an image analyst. When moving targets became occluded or came
to a standstill in certain frames, they were not judged to be moving in those frames. The results for
moving targets for each system were then compared to the ground truth, by noting for each frame
the number of targets successfully located and the number of false targets located. The false alarm
rate (FAR) for the sequence was calculated by dividing the total number offalse alarms recorded
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Figure 17: Detecting small targets in airborne surveillance. Top: frame from input sequence.
Bottom: Corresponding VMTI frame.
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Figure 18: Applying VMTI process to change detection in satellite imagery. Left and Middle:
Input images. Right: Difference image after registration.

by the number of frames in the sequence. The probability of detection (PD) was calculated as the
total number of targets successfully detected divided by the total number oftargets identified in
the ground truth. The results for the three systems are shown in Table 1.

Total FAR FAR PD Frames/s Report/s
Industry VMTI 446 0.0496 0.4285 30 8.37
ARIA 0 0.0000 0.1913 0.075 30
ADSS VMTI 47 0.0053 0.5963 27 30

Table 1: FAR, PD and timing results for the three VMTI systems

In the interests of drawing a fair comparison between the three systems, certain concessions
were made when calculating these statistics. These are detailed in the following section. Broadly
speaking however, we may draw the following conclusions:

• Industry VMTI provides a very fast VMTI system on relatively cheap hardware. However,
the higher processing speed appears to have come at the cost of the FARand PD rates. In
particular the current FAR would not be acceptable for a useful deployed system.

• ARIA produces an impressive FAR rate of zero (more generally, it has been recorded to
produce one false alarm in an hour of video footage), and an acceptable PD as the ana-
lyst only has be to be alerted once for a given moving target through the sequence, before
investigating further. However, its processing time is currently too slow to be acceptable.

• The ADSS VMTI produces the best PD in an acceptable processing time, though lag may
be an issue (see below). Further work on the FAR rate may be necessary(it found one false
alarm in the five minute sequence), probably by tuning the parameters to allow alower PD.

4.2 Analysis

The Industry VMTI System

The focus of the Industry VMTI system was to deliver as good a VMTI system as possible
while maintaining a real time implementation, and this has come at the expense of a higher FAR
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and lower PD. The system has demonstrated that it is certainly possible to do real time VMTI,
and we are not aware of any other COTS systems capable of real time VMTI. (For example, the
Jam system, developed by Pyramid Vision Technology, requires hardware acceleration for real
time tracking, and moreover the tracking requires initialisation by the user.) As detailed below, the
ADSS VMTI system is currently capable of near real time implementation.

The system currently has a bug in that there is no synchronisation betweenthe input frames
and the tracked objects reported for each frame (due to a bug in the third party MPEG decoder). It
was therefore necessary to synchronise the reporting with the input frames by hand, and this was
a difficult task as the relationship was nonlinear. As such, the following concession was made for
the Industry VMTI system when computing the PD: targets that were near enough to the targets
in the frame were counted as hits. In quite a few cases, this admitted targets thatwere almost
certainly false positives.

Although the implementation speed for the algorithm is recorded as 30 frames per second,
or real time for this data, it should be noted that the input data is sampled and VMTI results only
output approximately every 4 frames. The fourth column of Table 1 indicatesthe number of frames
reported on per second. The other two systems report VMTI results on every frame.

The Industry VMTI has a collection of tunable parameters, but no effortwas made to optimise
them for this sequence. This was due to the problem with the frame synchronisation and the
difficulty extracting meaningful information from the system, and then relating this information
to parameter settings. However, we would expect the parameters to be fairlyoptimal as the data
set used for this experiment was a part of a longer sequence supplied tothe software company
to develop the system. We should point out that the Industry VMTI system limits the speed of
moving targets that can be detected via an upper and lower threshold. As a result, the system did
not detect fast moving targets consistently in the sequence.

Another point of note is that the system would sometimes erroneously reportmultiple hits on
the one target; these were manually corrected and did not affect the FAR or PD results. Finally,
the video sequence we used did not contain passing clouds, which are apparent through much of
the full sequence. The motion of passing clouds tends to increase the FAR for the Industry VMTI
system dramatically. In contrast, the ARIA system has a significant amount of code devoted to the
removal of such clutter so that it does not generate false alarms.

The ARIA System

The ARIA system [12] is designed to automatically flag moving targets to a waiting analyst
for subsequent action such as zooming in, or other forms of investigation.The emphasis of the
algorithm is to have a very low FAR while providing reliable cues for moving targets to the analyst.
To this end, the ARIA system produces a visual display and text message ina log file as output
of its VMTI process. An important feature of the system is that it is able to leverage the abilities
of the analyst to detect targets from evidence gradually accrued in the display. Candidate targets
are displayed in the output images in red and over time this tends to generate trailsin the imagery
that correspond to moving targets. It is very often clear from this display that the scene contains
moving targets, readily distinguished from noise, well before an actual moving target is flagged
(which the system does in yellow). Importantly then, in terms of a deployed system, this provides
a much higher degree of usefulness than its lower PD would otherwise indicate. Moreover, once
a target is detected, the system tends to stay locked on to it. The parameters ofARIA were tuned
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using 8 minutes of video, and prior testing showed that ARIA performed justas well on 50 minutes
of video never seen before, as it did on the 8-minute test sequence. Theoperational implication of
this behaviour is that once suitable parameter values are chosen, they remain suitable for as long
as the sensor footprint on the ground stays roughly the same.

As pointed out above, the ARIA system also handles obscuration of the scene by passing
clouds, which broadens its usability considerably. However, this appears to have contributed to its
long implementation time, which at present renders the system impractical in realsituations. It is
hoped that the port of the system to ADSS in the C language, plus incorporating any optimisations
possible, will improve the implementation time considerably.

In terms of the FAR and PD results, there are two other points that should be mentioned. The
system only considers the greater central region of the image for VMTI results; the rest of the
image is blanked out by a border region where there is insufficient overlap between comparative
frames to carry out VMTI. For the particular sequence processed, thismeant that moving targets
at the side of the image were not detected and this is reflected in the PD result. Finally, the system
tended at times to count multiple targets as one; the long trails that are generatedin the imagery
tend to merge targets travelling in convoy. In practice, this may well not impact onthe effectiveness
of the algorithm in the field, but it does contribute to a lower PD. The trails wouldsometimes split,
resulting in multiple detections for the one target; as with Industry VMTI these were ignored and
did not affect the FAR or PD results.

The ADSS VMTI System

The ADSS VMTI system uses feature-tracking code, followed by registration and background
modelling to predict moving target candidates in the scene. A subsequent Probabilistic Multi
Hypothesis Tracker (PMHT) was used to remove noise and generate the list of actual targets. As
the PMHT component is a MATLAB algorithm and is not yet implemented in ADSS, itis not
reported herein (although it will be the subject of a future report). As can be seen from the table
of results, the results compare favourably with the other algorithms, in particular with a good PD
and an acceptable processing time (recorded on a twin processor using aparallel ADSS processing
pipeline). The result for the FAR was caused by a single false alarm detected in the sequence; as
mentioned above the parameters in the system could be adjusted to reduce the FAR at the expense
of a lower PD.

In this study, ADSS VMTI was run on a dual processor machine, each a 2.6GHz AMD64
Opteron, with 8GB RAM. The KLT feature tracking module to produce frame registration in-
formation was run on every fourth frame, and the background was modelled on every frame by
interpolating the registration results. VMTI results were reported on everyframe, as indicated
by the fourth column of Table 1. The ADSS processing pipeline was set up with three parallel
pipes, as this was found give the best timing results. A significant proportion of processing time
would normally be spent decoding and handling thempegimage format, but for the purposes of
this study the file format was converted to the native ADSS format before processing. Based on
these results then, we can claim a real time implementation of VMTI using hardware less than
5K AUD. It should be noted that the implementation time for the PMHT is not includedin this
timing result however, as it is currently implemented in MATLAB and is not part of the ADSS
system. It is anticipated, however, that the implementation time for the PMHT in ADSSwould
not contribute significantly to the timing results produced, as the PMHT currently runs in real time
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even in MATLAB on a 1.8GHz processor (and typically an algorithm implementedin C is one to
two orders of magnitude faster than the same algorithm in MATLAB).

There is currently an inherent lag in the ADSS VMTI algorithm caused by theneed to gen-
erate a background model before moving target candidates are produced. In the current example,
the baseline to generate the background model was 150 frames, or 5 seconds. In real applica-
tions, this lag may be unacceptable. A shorter baseline can be used (and would require further
experimentation). On the other hand, an implementation of the system using GPUsis currently
underway. It is expected that the significant savings in implementation time will effectively allow
an implementation without lag, apart from an initial boot-strapping phase.

Finally, in the case of a tracked target becoming occluded, the PMHT is designed to wait until
the target reappears while there is sufficient confidence in the measurements being collected. In
certain cases the PMHT is able to provide tracking information through occlusions while the target
moves behind objects such as trees, thus producing some remarkable tracking results. In terms of
comparisons to ground truth however, we find in such case that the systemfinds a result where
the ground truth has not, and these show up as false positives. We therefore decided to suppress
such results for the purposes of this study. The PMHT will also occasionally produce a track that
jumps from one target to another if they pass very close together. As the ground truth information
is simply a count of the number of targets in each frame, and individual tracks are not uniquely
identified (a more difficult experiment to undertake), this did not affect theFAR and PD results
recorded for the system.

4.3 Summary of Comparative Analysis

Three different VMTI systems have been compared on the basis of FAR and PD for a five-
minute video sequence containing small moving targets. The Industry VMTI system was found
to have the lowest performance in terms of these two measures, in particular the high FAR level
would not be acceptable for a useful deployed system. Although the Industry VMTI system has
the fastest implementation time, it processes and outputs results for only approximately one in
four frames. A system such as the ADSS VMTI therefore compares veryfavourably because it
is outputting VMTI results for all the available frames at a near real time frame rate. The caveat
with the ADSS VMTI system however is the lag in the system caused by the needto generate a
background model, which is a computationally demanding task that we are presently working to
overcome. The two other systems discussed herein would appear to hold more promise for a real
time VMTI system with a FAR low enough to be useful in real applications.

5 Conclusion

In this report, a review of VMTI in ADSS was presented. The VMTI subsystem has been de-
vised for video from moving sensors, in particular airborne urban surveillance video. As illustrated
in this report, the paradigm of the moving sensor poses some unique problemsas compared to the
stationary sensor, which we have largely solved by registering video frames over a short temporal
window. Our solution draws on a number of algorithms from the computer visioncommunity, and
combines them in a novel system. In particular, we leverage existing algorithmdevelopment in
shape from motion,e.g., the KLT feature tracking and RANSAC algorithms, and combine it with
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established work for the static camera scenario,e.g., background modelling and frame differenc-
ing. The solution provides positional and size information for any moving targets in a given video
sequence, on a frame by frame basis. Moreover, given suitable parallel non-specialised hardware,
the system allows a near real time solution to VMTI in ADSS.

Three different VMTI systems have been compared on the basis of FAR and PD for a five-
minute video sequence containing small moving targets. The Industry VMTI system was found
to have the lowest performance in terms of these two measures, in particular the high FAR level
would not be acceptable for a useful deployed system. Although the Industry VMTI system has
the fastest implementation time, it processes and outputs results for only approximately one in
four frames. A system such as the ADSS VMTI therefore compares veryfavourably because it
is outputting VMTI results for all the available frames at a near real time frame rate. The caveat
with the ADSS VMTI system however is the lag in the system caused by the needto generate a
background model, which is a computationally demanding task that we are presently working to
overcome.

Our future work on VMTI will focus on the porting of the ARIA system into ADSS, with a
view to speeding up the implementation time and possibly exploiting any advantages the sysem
offers. Based on the results of the comparative analysis, it is likely that thesystem will offer
considerably advantages in reducing the FAR, in particular in sequenceswhere there is moving
cloud cover. Future work will also focus on the implementation and refinementof a number of
tracking algorithms in ADSS, including PMHT and particle filters, with a view to optimising these
algorithms for our VMTI system.
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